初二数学知识点总结,初二数学重要知识点
来源:江南官网app下载 时间:2023-07-29
昨天小编翻了翻我的推文,发现初二数学知识点这类的文章点击率都比较高,看来有这方面问题的学生不在少数,今天小编就继续为大家补课,这次是初二数学知知识点,一次函数、二元一次方程组、和数据分析部分。
一次函数
一、函数:
一般地,在一变化过程中有两个变量x与y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量,y是因变量。
表示函数的方法一般有:列表法、关系式法、图像法。
二、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义等几方面考虑。
三、函数值
对于自变量在可取值范围内的一个确定的值a,若函数有唯一确定的对应值,这个对应值你为当自变量等于a时的函数值。
四、函数的图象:
把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象。
五、由函数关系式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
六、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,若两个变量x,y间的对应关系可以表示成y=kc+b(k,b为常数,k≠0
)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数y=kx+b中的b=0时(即y=kx)(k为常数,k≠
0),称y是x的正比例函数。
2、一次函数的图像: 所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数y=kx+b的图像是经过点(0,b)的直线;正比例函数y=kx的图像是经过原点(0,0)的直线。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质
一般地,正比例函数y=kx有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。<>
5、一次函数的性质
一般地,一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小<>
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k。确定一个一次函数,需要确定一次函数定义式y=kx+b(k≠0)中的常数k和b。解这类问题的一般方法是待定系数法。
7、一次函数与一元一次方程的关系:
任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.
结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.
从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.
二元一次方程组
1、二元一次方程
含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4二元一次方程组的解
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
5、二元一次方程组的解法
(1)代入(消元)法:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程的方法称为代入消元法,简称代入法。
(2)加减(消元)法:通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。
6、一次函数与二元一次方程(组)的关系:
(1)一次函数与二元一次方程的关系:
直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解。
(2)一次函数与二元一次方程组的关系:
二元一次方程组的解可看作两个一次函数的图象的交点。因此,一般地,从图形的角度看,确定两条直线交点的坐标,相当于求相应的二元一次方程组的解;解一个二元一次方程组相当于确定相应两条直线交点的坐标。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
7、待定系数法:先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。
数据的分析
1、描述一组数据的集中趋势(平均水平)的量:平均数 、众数、中位数
2、平均数
(1)平均数:一般地,对于n个数x1,x2,……,xn我们把(x1+x2+……xn)/n叫做这n个数的算术平均数,简称平均数,记为
。
(2)加权平均数:一组数据x1,x2,……,xn的权分加为w1,w2,……,wn,则称
为这n个数的加权平均数。
3、众数
一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
众数着眼于对各数据出现次数的考察,中位数首先要将数据按大小顺序排列,而且要注意当数据个数为奇数时,中间的那个数据就是中位数;当数据个数为偶数时,居于中间的两个数据的平均数才是中位数,特别要注意一组数据的平均数和中位数是唯一的,但众数则不一定是唯一的。
5、离散程度
极差:一组数据中最大数据与最小数据的差,叫做极差。
方差:是各个数据与平均数差的平方的平均数
标准差:方差的算术平方根。
一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
今天最后推荐的在线辅导平台是专注教育——中小学网上*辅导,全国重点中学名师*家教补家教补习。
以上就是江南官网app下载 为大家带来的初二数学知识点总结,初二数学重要知识点,希望能帮助到广大考生!